DEVELOPMENT AND EVALUATION OF A SUSTAINABLE SOLAR COOKER FOR OPERATIONS IN UGANDA

  • Sebunya Steven Kyambogo University
  • Sendegeya Almas Kyambogo University
  • Ssempijja Maureen Nalubowa Kyambogo University-Uganda

Abstract

Purpose of the Study: The research focused on developing and evaluating a solar cooker as a sustainable energy solution to address the cooking needs in Africa, using Uganda as a case study.

Statement of the Problem: While solar energy technologies have the potential to enhance energy sustainability and reduce greenhouse gas emissions, current solar cookers face limitations in addressing local cooking habits, energy demands, and geographical conditions in Uganda.

Methodology: The research established energy requirements for cooking based on common food types, average household size, and average solar irradiation in Uganda. A solar box cooker was designed and modeled using SOLIDWORKS software. Material selection and cost analysis were conducted for economic feasibility, and the optical and thermal performance was analyzed using COMSOL Multi-Physics software. A prototype was constructed using locally available materials to assess manufacturability and cost implications.

Results: A box-type solar cooker was developed with inner reflector walls at an optimal angle and internal insulation for better heat retention and efficiency. The cooker, with an aperture area of 0.1897 m², meets the thermal requirements for cooking common foods in major regions of Uganda. All materials used are locally available, making the cooker appropriate, sustainable, and affordable.

Conclusion: The proposed solar cooker offers a viable alternative to traditional cooking methods in Uganda. It effectively cooks common foods, is cost-effective, and provides environmental benefits, reducing reliance on charcoal.

Keywords: Solar cookers; Sustainability; Solar box cooker; Cooking dynamics; Solar irradiation

Author Biographies

Sebunya Steven , Kyambogo University

Student, Department of Mechanical and Production Engineering, P.O Box 1, Kyambogo University – Kampala (Uganda)

Sendegeya Almas , Kyambogo University

Senior Lecturer, Electrical Power Systems / Renewable Energy, Department of Electrical and Electronics Engineering, P.O Box 1, Kyambogo University – Kampala (Uganda)

Ssempijja Maureen Nalubowa , Kyambogo University-Uganda

Lecturer, Department of Mechanical and Production Engineering, P.O Box 1, Kyambogo University – Kampala (Uganda)

References

Adam. (2024). How Much Meat per Person: Portion Sizes for Different Meat Types. In Smoke Guys (p. 1). https://smokeguys.com/how-much-meat-per-person/

Adeyemi, K., Lawal, N., & Asere, A. (2017). Thermal Performance of Improved Charcoal Stove as A Clean Development Mechanism Project – A Case Study of Bauchi. FUOYE Journal of Engineering and Technology, 2(1). https://doi.org/10.46792/fuoyejet.v2i1.62

Akumu, G., Ogenrwoth, B., Mugisha, J., & Muyonga, J. H. (2023). Dietary Patterns in Uganda and Their Influencing Factors: a Critical Review. African Journal of Food, Agriculture, Nutrition and Development, 23(2), 22328–22353. https://doi.org/10.18697/ajfand.117.22345

Ali Kakar, M., Kasi, J. K., Kasi, A. K., Bokhari, M., Latif, M., & Ayaz, M. (2019). The efficiency of a solar cooker in Pakistan’s Quetta Region. Polish Journal of Environmental Studies, 28(6), 4213–4220. https://doi.org/10.15244/pjoes/95034

Aramesh, M., Ghalebani, M., Kasaeian, A., & Zamani, H. (2019). A review of recent advances in solar cooking technology. Renew. Energy, 140, 419–435. https://doi.org/10.1016/j.renene.2019.03.021

Ayub, H. R., Ambusso, W. J., Manene, F. M., & Nyaanga, D. M. (2022). A Review of Cooking Systems and Energy Efficiencies A Review of Cooking Systems and Energy Efficiencies. February. https://doi.org/10.11648/j.ajee.20210901.11

Bamwesigye, D., Kupec, P., Chekuimo, G., Pavlis, J., Asamoah, O., Darkwah, S. A., & Hlaváčková, P. (2020). Charcoal and wood biomass utilization in uganda: The socioeconomic and environmental dynamics and implications. Sustain., 12(20), 1–18. https://doi.org/10.3390/su12208337

De, D. K., Nathaniel, M., & De, N. N. (2014). Cooking rice with minimum energy. 013138, 1–13. https://doi.org/10.1063/1.4865794

Engoor, G. G. (2020). Experimental investigation of a box-type solar cooker incorporated with Fresnel lens magnifier. Energy Sources, Part A Recover. Util. Environ. Eff., 00(00), 1–16. https://doi.org/10.1080/15567036.2020.1826009

Falcone, P. M. (2023). Sustainable Energy Policies in Developing Countries: A Review of Challenges and Opportunities. Energies, 16(18). https://doi.org/10.3390/en16186682

Geddam, S., Dinesh, G. K., & Sivasankar, T. (2015). Determination of thermal performance of a box type solar cooker. Solar Energy, 113, 324–331. https://doi.org/10.1016/j.solener.2015.01.014

Guzman, L., Henao, A., & Vasquez, R. (2014). Simulation and optimization of a parabolic trough solar power plant in the city of Barranquilla by using system advisor model ( SAM ). Energy Procedia, 57, 497–506. https://doi.org/10.1016/j.egypro.2014.10.203

Hager, T. J., & Morawicki, R. (2013). Energy consumption during cooking in the residential sector of developed nations : A review. Food Policy, 40, 54–63. https://doi.org/10.1016/j.foodpol.2013.02.003

IEA. (2023). Uganda 2023 Energy Policy Review. Ministry of Energy and Mineral Development -Uganda, 1–184. www.iea.org/t&c/%0Ahttps://memd.go.ug/wp-content/uploads/2020/07/Uganda2023-Energy-Policy-Review.pdf

Iessa, L., Vries, Y. A. De, Swinkels, C. E., Smits, M., & Butijn, C. A. A. (2017). Energy Research & Social Science What ’ s cooking ? Unveri fi ed assumptions , overlooking of local needs and pro-solution biases in the solar cooking literature. Energy Res. Soc. Sci., 28(May), 98–108. https://doi.org/10.1016/j.erss.2017.04.007

Kahsay, M. B., Paintin, J., Mustefa, A., Haileselassie, A., Tesfay, M., & Gebray, B. (2014). Theoretical and Experimental Comparison of Box Solar Cookers with and without Internal Reflector. Energy Procedia, 57, 1613–1622. https://doi.org/10.1016/j.egypro.2014.10.153

Kajumba, P. K., Okello, D., Nyeinga, K., & Nydal, O. J. (2020). Experimental investigation of a cooking unit integrated with thermal energy storage system. J. Energy Storage, 32(August 2019), 101949. https://doi.org/10.1016/j.est.2020.101949

Kajumba, P. K., Okello, D., Nyeinga, K., & Nydal, O. J. (2022). Energy for Sustainable Development Assessment of the energy needs for cooking local food in Uganda : A strategy for sizing thermal energy storage with cooker system. Energy for Sustainable Development, 67, 67–80. https://doi.org/10.1016/j.esd.2022.01.005

Katongole, D. N., Nyeinga, K., Okello, D., & Mukiibi, D. (2023). Spatial and Temporal Solar Potential Variation Analysis in Uganda Using Measured Data. 49(1), 1–14.

Katutsi, V., Dickson, T., & Migisha, A. G. (2020). Drivers of Fuel Choice for Cooking among Uganda ’ s Households. 111–129. https://doi.org/10.4236/ojee.2020.93008

Kulla, D. M., Umaru, S., & Usman, K. M. (2020). Simulation, Construction and Performance Evaluation of Solar Box Cooker. Journal Of Science Technology And Education, 8(1), 318–328. https://www.researchgate.net/publication/340418027

Lentswe, K., Mawire, A., Owusu, P., & Shobo, A. (2021). Heliyon Review article A review of parabolic solar cookers with thermal energy storage. Heliyon, 7(September), e08226. https://doi.org/10.1016/j.heliyon.2021.e08226

Mainimo, E. N., Okello, D. M., Mambo, W., & Mugonola, B. (2022). Drivers of household demand for cooking energy: A case of Central Uganda. Heliyon, 8(3), e09118. https://doi.org/10.1016/j.heliyon.2022.e09118

Miranda, M. R. da S., Veras, C. A. G., & Ghesti, G. F. (2020). Charcoal production from waste pequi seeds for heat and power generation. Waste Management, 103, 177–186. https://doi.org/10.1016/j.wasman.2019.12.025

Misra, N., Anand, A., Pandey, S., Kant, K., Misra, N., Anand, A., Pandey, S., Kant, K., & Shukla, A. (2023). Box-Type Solar Cookers : An Overview of Technological Advancement , Energy , Environmental , and Economic Benefits To cite this version : HAL Id : hal-03983854

Mundu, M. M. (2021). Modelling and Navigation of Solar Electric Power Potential and Generation in the Four Regions of Uganda.

Nsamba, H. K., Ssali, R., Ssali, S. N., Matovu, F., Wasswa, J., & Balimunsi, H. K. (2021). Evaluation of the Cooking Cultures and Practices in Rural Uganda. 33–44. https://doi.org/10.4236/jsbs.2021.111003

Pathare, P. B., & Paul, A. (2016). Quality and Energy Evaluation in Meat Cooking. Food Eng. Rev., 8(4), 435–447. https://doi.org/10.1007/s12393-016-9143-5

RET. (2014). Lesson 18: Performance Evaluation of Solar Cookers. In Renew. Energy Technoloy. http://ecoursesonline.iasri.res.in/mod/page/view.php?id=128351

Schindelholz, R., Notzon, D., Chaciga, J., Julia, O., Ongaro, C., Dutheil, J., Burnier, L., Manwani, K., Fleury, J., Kwarikunda, N., & Schüler, A. (2024). Performances studies of a basket-based solar cooker for humanitarian aid in Uganda. Solar Energy, 268(December 2023), 112272. https://doi.org/10.1016/j.solener.2023.112272

Soro, D., Soro, D., Sidibé, M., Doumbia, Y., Touré, S., & Marí, B. (2020). Theoretical and Experimental Studies of a Box-Type Solar Cooker in Unfavorable Climatic Conditions. 51–60. https://doi.org/10.4236/sgre.2020.114004

Vaidya, H., Rathod, M., & Channiwala, S. (2023). Design , development , and analysis of a box type solar cooker with optimally reflecting side walls. 9(3), 637–647. https://doi.org/10.18186/thermal.1297564
Published
2025-01-27
How to Cite
Sebunya, S., Sendegeya , A., & Nalubowa , S. M. (2025). DEVELOPMENT AND EVALUATION OF A SUSTAINABLE SOLAR COOKER FOR OPERATIONS IN UGANDA. African Journal of Emerging Issues, 7(2), 13 - 27. Retrieved from https://ajoeijournals.org/sys/index.php/ajoei/article/view/757
Section
Articles